Perform statistical analysis, functional analysis, and visualization of proteome, genome, transcriptome, and metabolome data identified by well-accepted detection technologies, and enable the integration of different omics data.
Technical Advantages
Starting from data quality control, we integrate information from various dimensions and screen out important molecules related to diseases or phenotypes.
The analysis methods used are self-developed or state-of-the-art algorithms, and the annotation information is derived from highly quality and up-to-date database.
Application Areas
Proteomics data from mass spectrometry or protein chip
Genomic and transcriptomic data from microarray and high-throughput sequencing (Bulk RNA-Seq OR scRNA-Seq)
[2]Yang Cao, Qingyang Dong, Dan Wang, Ying Liu, Pengcheng Zhang, Xiaobo Yu, Chao Niu, TIDB: a comprehensive database of trained immunity, Database, Volume 2021, 2021, baab041, 阅读全文
[3]Wang D, Yang D, Yang L, Diao L, Zhang Y, Li Y, Wang H, Ren J, Cheng L, Tan Q, Zhang R, Han X, Zhang X, Wang B, Li D, Chen M, Hermjakob H, Li Y, LaBaer J, Zhou Z, Yu X. Human Autoantigen Atlas: Searching for the Hallmarks of Autoantigens. J Proteome Res. 2023 Jun 2;22(6):1800-1815. doi: 10.1021/acs.jproteome.2c00799. Epub 2023 May 14. PMID: 37183442.阅读全文